Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Clin Virol ; 162: 105426, 2023 05.
Article in English | MEDLINE | ID: covidwho-2300902

ABSTRACT

Widespread use of over-the-counter rapid diagnostic tests for SARS-CoV-2 has led to a decrease in availability of clinical samples for viral genomic surveillance. As an alternative sample source, we evaluated RNA isolated from BinaxNOW swabs stored at ambient temperature for SARS-CoV-2 rRT-PCR and full viral genome sequencing. 81 of 103 samples (78.6%) yielded detectable RNA, and 46 of 57 samples (80.7 %) yielded complete genome sequences. Our results illustrate that SARS-CoV-2 RNA extracted from used Binax test swabs provides an important opportunity for improving SARS-CoV-2 genomic surveillance, evaluating transmission clusters, and monitoring within-patient evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , RNA, Viral/analysis , Molecular Diagnostic Techniques , Whole Genome Sequencing/methods
2.
Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology ; 2023.
Article in English | EuropePMC | ID: covidwho-2274096

ABSTRACT

Widespread use of over-the-counter rapid diagnostic tests for SARS-CoV-2 has led to a decrease in availability of clinical samples for viral genomic surveillance. As an alternative sample source, we evaluated RNA isolated from BinaxNOW swabs stored at ambient temperature for SARS-CoV-2 rRT-PCR and full viral genome sequencing. 81 of 103 samples (78.6%) yielded detectable RNA, and 46 of 57 samples (80.7 %) yielded complete genome sequences. Our results illustrate that SARS-CoV-2 RNA extracted from used Binax test swabs provides an important opportunity for improving SARS-CoV-2 genomic surveillance, evaluating transmission clusters, and monitoring within-patient evolution.

3.
Pathog Immun ; 7(1): 104-121, 2022.
Article in English | MEDLINE | ID: covidwho-2026030

ABSTRACT

Background: The continued emergence of SARS-CoV-2 variants has caused concern that a constantly evolving virus will escape vaccines and antibody therapies. New approaches are needed. Methods: We created and manufactured an ACE2 extracellular domain (ECD) fragment Fc fusion drug candidate, G921, and engineered the compound for enhanced delivery of drug to peripheral tissues by minimizing the size of the ACE2 ECD and by incorporating an Fc domain to enhance transcytosis. G921 was assessed for binding, neutralization, in vivo anti-inflammatory effect, and pharmacokinetic profile. Results: G921 was expressed as an IgG4 Fc fusion protein presenting two ACE2 domains to ACE2 ligands while avoiding risk of infection via antibody-dependent enhancement. G921 strongly binds to the SARS-CoV-2 Wuhan-Hu-1 spike protein and demonstrates further diminished off rate to the spike protein from each of the currently identified variants of concern. G921 demonstrates ACE2 enzymatic activity comparable to positive control and binding to the neonatal Fc receptor (FcRn) without binding to low affinity Fc-gamma receptors (FcγRs). G921 is effective in a concentration-dependent manner in a focus reduction neutralization assay with EC50=16.3±4.2 µg/mL without cytotoxicity in Vero E6 cells when tested at 200 µg/mL in an MTS cell proliferation assay. G921 demonstrates statistically significant reduction of lung inflammation in relevant models of both SARS-CoV-2 and influenza. The pharmacokinetic profile demonstrated dose-dependent exposure with a multi-day half-life in monkeys and rats. Conclusion: G921 data are consistent with both antiviral and anti-inflammatory modes of action. G921 is a novel approach for the prevention and treatment of COVID-19 and possible other diseases characterized by deficiency of ACE2.

4.
Cell ; 185(19): 3603-3616.e13, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2003917

ABSTRACT

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/genetics , Humans , Mammals , Mutation , Nucleocapsid , SARS-CoV-2/genetics
5.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1997721

ABSTRACT

Viral resistance is a worldwide problem mitigating the effectiveness of antiviral drugs. Mutations in the drug-targeting proteins are the primary mechanism for the emergence of drug resistance. It is essential to identify the drug resistance mutations to elucidate the mechanism of resistance and to suggest promising treatment strategies to counter the drug resistance. However, experimental identification of drug resistance mutations is challenging, laborious and time-consuming. Hence, effective and time-saving computational structure-based approaches for predicting drug resistance mutations are essential and are of high interest in drug discovery research. However, these approaches are dependent on accurate estimation of binding free energies which indirectly correlate to the computational cost. Towards this goal, we developed a computational workflow to predict drug resistance mutations for any viral proteins where the structure is known. This approach can qualitatively predict the change in binding free energies due to mutations through residue scanning and Prime MM-GBSA calculations. To test the approach, we predicted resistance mutations in HIV-RT selected by (-)-FTC and demonstrated accurate identification of the clinical mutations. Furthermore, we predicted resistance mutations in HBV core protein for GLP-26 and in SARS-CoV-2 3CLpro for nirmatrelvir. Mutagenesis experiments were performed on two predicted resistance and three predicted sensitivity mutations in HBV core protein for GLP-26, corroborating the accuracy of the predictions.


Subject(s)
COVID-19 , HIV Infections , Antiviral Agents/chemistry , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , Hepatitis B virus/genetics , Humans , Mutation , SARS-CoV-2/genetics
6.
J Biol Chem ; 298(3): 101635, 2022 03.
Article in English | MEDLINE | ID: covidwho-1702774

ABSTRACT

The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR-Cas9 gene KO or lentiviral viral protein X-mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2-infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.


Subject(s)
COVID-19 , SAM Domain and HD Domain-Containing Protein 1 , SARS-CoV-2 , Antiviral Agents/pharmacology , Autoimmune Diseases of the Nervous System , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Humans , Immunity, Innate , Interferons , Nervous System Malformations , RNA, Viral , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication/immunology
7.
iScience ; 25(3): 103968, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1701995

ABSTRACT

As the emergence of SARS-CoV-2 variants brings the global pandemic to new levels, the performance of current rapid antigen tests against variants of concern and interest (VOC/I) is of significant public health concern. Here, we report assessment of the Abbot BinaxNOW COVID-19 Antigen Self-Test. Using genetically sequenced remnant clinical samples collected from individuals positive for SARS-CoV-2, we assessed the performance of BinaxNOW against the variants that currently pose public health threats. We measured the limit of detection of BinaxNOW against various VOC/I in a blinded manner. BinaxNOW successfully detected the Omicron (B.1.1.529), Mu (B.1.621), Delta (B.1.617.2), Lambda (C.37), Gamma (P.1), Alpha (B.1.1.7), Beta (B.1.351), Eta (B.1.525), and P.2 variants and at low viral concentrations. BinaxNOW also detected the Omicron variant in individual remnant clinical samples. Overall, these data indicate that this inexpensive and simple-to-use, FDA-authorized and broadly distributed rapid test can reliably detect Omicron, Delta, and other VOC/I.

8.
Immunohorizons ; 6(2): 144-155, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1690086

ABSTRACT

Due to the severity of COVID-19 disease, the U.S. Centers for Disease Control and Prevention and World Health Organization recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level (BSL)3 laboratories. Therefore, it is imperative to develop viral inactivation procedures that permit samples to be transferred to lower containment levels (BSL2), while maintaining the fidelity of complex downstream assays to expedite the development of medical countermeasures. In this study, we demonstrate optimal conditions for complete viral inactivation following fixation of infected cells with commonly used reagents for flow cytometry, UVC inactivation in sera and respiratory secretions for protein and Ab detection, heat inactivation following cDNA amplification for droplet-based single-cell mRNA sequencing, and extraction with an organic solvent for metabolomic studies. Thus, we provide a suite of viral inactivation protocols for downstream contemporary assays that facilitate sample transfer to BSL2, providing a conceptual framework for rapid initiation of high-fidelity research as the COVID-19 pandemic continues.


Subject(s)
COVID-19/prevention & control , Specimen Handling/methods , Virus Inactivation , Hot Temperature , Humans , Metabolomics/methods , Pandemics/prevention & control , SARS-CoV-2 , Ultraviolet Rays
9.
IEEE Open J Eng Med Biol ; 2: 142-151, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1596389

ABSTRACT

Faced with the COVID-19 pandemic, the US system for developing and testing technologies was challenged in unparalleled ways. This article describes the multi-institutional, transdisciplinary team of the "RADxSM Tech Test Verification Core" and its role in expediting evaluations of COVID-19 testing devices. Expertise related to aspects of diagnostic testing was coordinated to evaluate testing devices with the goal of significantly expanding the ability to mass screen Americans to preserve lives and facilitate the safe return to work and school. Focal points included: laboratory and clinical device evaluation of the limit of viral detection, sensitivity, and specificity of devices in controlled and community settings; regulatory expertise to provide focused attention to barriers to device approval and distribution; usability testing from the perspective of patients and those using the tests to identify and overcome device limitations, and engineering assessment to evaluate robustness of design including human factors, manufacturability, and scalability.

10.
IEEE Open J Eng Med Biol ; 2: 286-290, 2021.
Article in English | MEDLINE | ID: covidwho-1592551

ABSTRACT

Goal: Monitoring the genetic diversity and emerging mutations of SARS-CoV-2 is crucial for understanding the evolution of the virus and assuring the performance of diagnostic tests, vaccines, and therapies against COVID-19. SARS-CoV-2 is still adapting to humans and, as illustrated by B.1.1.7 (Alpha) and B.1.617.2 (Delta), lineage dynamics are fluid, and strain prevalence may change radically in a matter of months. The National Institutes of Health's Rapid Acceleration of Diagnostics (RADxSM) initiative created a Variant Task Force to assess the impact of emerging SARS-CoV-2 variants on in vitro diagnostic testing. Working in tandem with clinical laboratories, the FDA, and the CDC, the Variant Task Force uses both in silico modeling and in vitro testing to determine the effect of SARS-CoV-2 mutations on diagnostic molecular and antigen tests. Here, we offer an overview of the approach and activities of the RADx Variant Task Force to ensure test performance against emerging SARS-CoV-2 lineages.

11.
J Clin Microbiol ; 59(12): e0144621, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1522905

ABSTRACT

To provide an accessible and inexpensive method to surveil for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations, we developed a multiplex real-time reverse transcription-PCR (rRT-PCR) assay, the Spike single-nucleotide polymorphism (SNP) assay, to detect specific mutations in the spike receptor binding domain. A single primer pair was designed to amplify a 348-bp region of spike, and probes were initially designed to detect K417, E484K, and N501Y. The assay was evaluated using characterized variant sample pools and residual nasopharyngeal samples. Variant calls were confirmed by SARS-CoV-2 genome sequencing in a subset of samples. Subsequently, a fourth probe was designed to detect L452R. The lower limit of 95% detection was 2.46 to 2.48 log10 genome equivalents (GE)/ml for the three initial targets (∼1 to 2 GE/reaction). Among 253 residual nasopharyngeal swabs with detectable SARS-CoV-2 RNA, the Spike SNP assay was positive in 238 (94.1%) samples. All 220 samples with threshold cycle (CT) values of <30 for the SARS-CoV-2 N2 target were detected, whereas 18/33 samples with N2 CT values of ≥30 were detected. Spike SNP results were confirmed by sequencing in 50/50 samples (100%). Addition of the 452R probe did not affect performance for the original targets. The Spike SNP assay accurately identifies SARS-CoV-2 mutations in the receptor binding domain, and it can be quickly modified to detect new mutations that emerge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription
12.
Curr Res Pharmacol Drug Discov ; 2: 100045, 2021.
Article in English | MEDLINE | ID: covidwho-1351596

ABSTRACT

Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 â€‹cells, and anti-HCoV-OC43 activity in Huh-7 â€‹cells. We also compared the cellular pharmacology of these two compounds in Vero E6, Vero CCL-81, Calu-3, Caco-2, Huh-7, 293T, BHK-21, 3T3 and human airway epithelial (HAE) cells. Overall, remdesivir exhibited greater potency and superior intracellular metabolism than GS-441524 except in Vero E6 and Vero CCL-81 â€‹cells.

13.
Sci Rep ; 11(1): 14604, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315611

ABSTRACT

While there has been significant progress in the development of rapid COVID-19 diagnostics, as the pandemic unfolds, new challenges have emerged, including whether these technologies can reliably detect the more infectious variants of concern and be viably deployed in non-clinical settings as "self-tests". Multidisciplinary evaluation of the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW, a widely used rapid antigen test, included limit of detection, variant detection, test performance across different age-groups, and usability with self/caregiver-administration. While BinaxNOW detected the highly infectious variants, B.1.1.7 (Alpha) first identified in the UK, B.1.351 (Beta) first identified in South Africa, P.1 (Gamma) first identified in Brazil, B.1.617.2 (Delta) first identified in India and B.1.2, a non-VOC, test sensitivity decreased with decreasing viral loads. Moreover, BinaxNOW sensitivity trended lower when devices were performed by patients/caregivers themselves compared to trained clinical staff, despite universally high usability assessments following self/caregiver-administration among different age groups. Overall, these data indicate that while BinaxNOW accurately detects the new viral variants, as rapid COVID-19 tests enter the home, their already lower sensitivities compared to RT-PCR may decrease even more due to user error.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Point-of-Care Systems , Self-Testing , Humans , Limit of Detection , SARS-CoV-2 , Sensitivity and Specificity
14.
Microorganisms ; 9(5)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1201125

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is a deadly emerging infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Because SARS-CoV-2 is easily transmitted through the air and has a relatively long incubation time, COVID-19 has rapidly developed into a global pandemic. As there are no antiviral agents for the prevention and treatment of this severe pathogen except for remdesivir, development of antiviral therapies to treat infected individuals remains highly urgent. Here, we showed that baicalein and baicalin exhibited significant antiviral activity against SARS-CoV-2, the causative agent of COVID-19 through in vitro studies. Our data through cell-based and biochemical studies showed that both compounds act as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors directly and inhibit the activity of the SARS-CoV-2 RdRp, but baicalein was more potent. We also showed specific binding of baicalein to the SARS-CoV-2 RdRp, making it a potential candidate for further studies towards therapeutic development for COVID-19 as a selective non-nucleoside polymerase inhibitor.

15.
Antimicrob Agents Chemother ; 65(1)2020 12 16.
Article in English | MEDLINE | ID: covidwho-1015593

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a serious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or CoV-2). Some reports claimed certain nucleoside analogs to be active against CoV-2 and thus needed confirmation. Here, we evaluated a panel of compounds and identified novel nucleoside analogs with antiviral activity against CoV-2 and HCoV-OC43 while ruling out others. Of significance, sofosbuvir demonstrated no antiviral effect against CoV-2, and its triphosphate did not inhibit CoV-2 RNA polymerase.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning/methods , Nucleosides/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Cell Line , Chlorocebus aethiops , Coronavirus OC43, Human/drug effects , Drug Evaluation, Preclinical , Humans , Nucleosides/chemistry , Nucleosides/toxicity , Propanolamines/pharmacology , Sofosbuvir/pharmacology , Vero Cells
16.
Am J Hematol ; 96(2): 174-178, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-954382
17.
Emerg Infect Dis ; 26(12): 2974-2978, 2020 12.
Article in English | MEDLINE | ID: covidwho-732923

ABSTRACT

Among patients with coronavirus disease (COVID-19), IgM levels increased early after symptom onset for those with mild and severe disease, but IgG levels increased early only in those with severe disease. A similar pattern was observed in a separate serosurveillance cohort. Mild COVID-19 should be investigated separately from severe COVID-19.


Subject(s)
COVID-19/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Case-Control Studies , Disease Progression , Female , Georgia , Humans , Male , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2
18.
Emerg Infect Dis ; 26(9): 2016-2021, 2020 09.
Article in English | MEDLINE | ID: covidwho-505876

ABSTRACT

There are few detailed investigations of neurologic complications in severe acute respiratory syndrome coronavirus 2 infection. We describe 3 patients with laboratory-confirmed coronavirus disease who had encephalopathy and encephalitis develop. Neuroimaging showed nonenhancing unilateral, bilateral, and midline changes not readily attributable to vascular causes. All 3 patients had increased cerebrospinal fluid (CSF) levels of anti-S1 IgM. One patient who died also had increased levels of anti-envelope protein IgM. CSF analysis also showed markedly increased levels of interleukin (IL)-6, IL-8, and IL-10, but severe acute respiratory syndrome coronavirus 2 was not identified in any CSF sample. These changes provide evidence of CSF periinfectious/postinfectious inflammatory changes during coronavirus disease with neurologic complications.


Subject(s)
Betacoronavirus , Brain Diseases/virology , Coronavirus Infections/complications , Cytokines/cerebrospinal fluid , Encephalitis, Viral/virology , Pneumonia, Viral/complications , Adult , Brain Diseases/cerebrospinal fluid , COVID-19 , Coronavirus Infections/cerebrospinal fluid , Coronavirus Infections/virology , Encephalitis, Viral/cerebrospinal fluid , Fatal Outcome , Female , Georgia , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/cerebrospinal fluid , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL